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Abstract – This paper presents a significant 

improvement from the previous submission by the 

same authors at ISARC 2016. The robot is now 

equipped with low-cost cameras and a 2D laser 

scanner, which is used to monitor and survey a 

bridge bearing. The robot is capable of localising by 

combining data from a pre-surveyed 3D model of the 

space with real-time data collection in-situ. 

Autonomous navigation is also performed using the 

2D laser scanner in a mapped environment.   

The Robot Operating System (ROS) framework is 

used to integrate data collection and communication 

for navigation.  

 
Keywords – Bridge inspection, monitoring, SfM, 

SLAM, ROS. 

1 - Introduction 

Continuing on from work by the same authors [1], 

more off-the-shelf and low-cost solutions are considered 

for autonomously navigating a bridge abutment, with 

the aim of performing a visual inspection on a bridge 

bearing.  

Visual inspection is an important part of inspecting a 

bridge bearing. In fact, regular inspection is  defined in 

the European and British standard for inspection and 

maintenance of structural bearings as: “close visual 

inspection without measurements, spaced at equal 

reasonably frequent, intervals” [2].  
Most of the main problems affecting bearings are 

reflected in changes to geometry, including: translation, 

rotation or deformation [3], [4]. Current methods to 

measure changes in the bearing geometry include [3]: 

metric tapes, gap gauges, air bubble levels, quadrant 

rulers, compasses and verniers, levelling and 

topographic surveys or direct visual observations. 

However, regular inspection of bridge bearings often 

does not occur as frequently as required, in some cases 

due to difficult access or dangerous conditions. Bridge 

bearings are critical for the performance in the bridge 

and inadequate inspection may lead to much greater 

problems later on in the bridges life. 

One solution to increase frequency of inspection is 

to automate the inspection process. However, the wide 

range of bridge design and function means that there is 

not a one size fits all robot for bridge inspection, with 

technologies being developed for drones [5], underwater 

vehicles [6] and climbing robots for steel structure 

bridges [7]. Our contribution is a low cost solution to 

autonomously performing visual inspection, with 

technology that can be obtained and implemented in 

bridge bearing inspection in the near future. In this 

paper we focus on the implementation of autonomous 

navigation for autonomous inspection. 

Another motive for using robots for inspection is to 

increase the repeatability of inspections. Previously, we 

implemented the 3D reconstruction method Structure 

from Motion (SfM) to enhance the information about a 

bridge in a format that can be compared directly over 

time. Now we look at other ways of using this 

information. Specifically we use a method for 

Simultaneous Localisation and Mapping (SLAM) in the 

bridge abutment, where SLAM images can also be used 

for SfM and visa-versa.  

We also consider a second SLAM approach called 

Hector SLAM that uses LIDAR only and we implement 

autonomous navigation using a known map and 

consider some of the challenges of operating in an 

inspection environment. 

2 - Structure-from-Motion (SfM) 

Structure-from-Motion (SfM) was used in this work 

and in previous work [1] as a method for adding value 

to visual inspection. SfM uses multiple 2D image views 

to find the 3D geometry (i.e., the structure) of a scene or 

an object by taking images from different viewpoints 

(i.e., the camera has motion). The 3D reconstruction 

software Zephyr Aerial, produced by the company 

3Dflow [8], was used for Structure-from-Motion and 

Multiview stereo calculations and reconstructions in this 

work. Since SfM is not the primary focus of the work, 

for a detailed overview of the methods behind SfM and 

MVS refer to [9] and [10]. 
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3 – Simultaneous Localisation and Mapping 

(SLAM) 

Simultaneous Localisation and Mapping (SLAM) is 

the process of using sensor readings (e.g., LIDAR, 

camera and RGB-D sensors) to create a map of the 

environment whilst at the same time finding the location 

of the sensor in relation to the map that is being created. 

There are many implementations of SLAM including 

filter based methods (such as Extended Kalman filter 

SLAM [11]), particle based methods (such as Monte-

Carlo Localisation [12]) and graph-based methods (such 

as GraphSLAM [13]).  

In this paper, two options for SLAM are considered: 

ORB-SLAM [14] and Hector SLAM [15]. Both of these 

methods are performed online - i.e., the computation is 

done at the same time as the sensor data is being 

collected. However, due to the computational 

requirements of these methods, the SLAM calculations 

were not done on the Raspberry Pi. Instead, The Robot 

Operating System (ROS) was used to pass camera and 

laser scan messages respectively to a laptop, where the 

results are computed. 

3.1 ORB-SLAM 

ORB-SLAM is a form of Visual SLAM with both 

monocular and stereo implementations [14]. Features 

are extracted from images using Oriented Fast and 

Rotated Brief (ORB) descriptors, chosen for fast 

extraction and matching overhead compared to other 

image features, to allow real-time computation without 

a GPU [14]. The same features are used for tracking, 

local mapping and localisation for efficiency and 

reliability [14].  

Map points contain information about its 3D 

position relative to the world coordinate, the direction 

the point was viewed from, a representative ORB 

descriptor and the maximum and minimum distances at 

which the point can be observed. 

Before ORB SLAM begins to create a map, a 

process of initialisation must first occur, with the goal of 

computing the relative poses between two frames to 

triangulate an initial set of map points. Only when it is 

certain that the two views provided will avoid a 

corrupted map can initialisation be completed, since 

ambiguity causes all the points to be plotted on a  plane 

[14]. 

The software implementation of ORB-SLAM used 

in this work is ORB-SLAM2 [16], which also has a 

ROS node. ORB-SLAM was chosen as a candidate for 

localisation because it has been shown to work in urban 

implementations [14], and has also been implemented 

using the Raspberry Pi camera in an indoor office 

environment [17]. Hence, only the low cost camera was 

required and for localisation and visual inspection. 

3.2 Hector SLAM 

Hector SLAM was developed for autonomous 

navigation for urban search and rescue robots [15]. 

Hector SLAM does not require wheel odometry and 

relies only on fast LIDAR scan matching [18].  

hector_slam [19] is a ROS metapackage that 

provides packages such as hector_mapping, the ROS 

node used for SLAM,  hector_geotiff which can be used 

to save the robot trajectory,  map and objects of interest 

in geotiff format. Hector SLAM is designed to be used 

in 3D, e.g., for robots travelling over rough terrain or 

aerial vehicles [15], where robots are required to move 

with up to 6 degrees of freedom. The SLAM system, 

hector_mapping, is 2D and 3D navigation is achieved 

by fusing information from an inertial measurement unit. 

The 2D and 3D solutions are updated separately, but 

remain coupled in time. Other sensors can also be 

integrated to decrease uncertainty caused by sensor drift 

[15], although none are implemented in this paper.   

The 2D map is created on an occupancy grid, with 

interpolation to allow sub-grid accuracy. This approach 

utilises the high scan rates of modern LIDAR sensors, 

and provides a more accurate alternative to traditional 

odometry [18]. Scan alignment is performed based on 

optimising the alignment of the laser beam endpoints 
using Gauss-Newton optimisation approach to find the 

best alignment of the current laser scan data with the 

existing map through a rigid transform for some cost 

function [18].  

4 - Adaptive Monte-Carlo Localisation  

Adaptive Monte-Carlo Localisation (AMCL) is a 

particle filter method for localisation. Particle filters 

represent the knowledge a robot has about its position in 

a given map using a set of particles. Initially, this set of 

particles is spread over the known map. Measurement 

and motion models are applied to all of the particles to 

update the position of each particle. Weightings are then 

applied to the set of particles depending on the 

likelihood that a sensor reading at a given location 

matches the position of a particular particle.   

The efficiency of particle filter methods rely on the 

number of particles being used.  The KLD Monte- Carlo 

algorithm is derived from Kullback-Leibler divergence 

that adaptively updates the number of particles over 

time [12], allowing a high number of particles in the 

initial stages of localisation and a much lower number 

of particles for tracking when the robot location is 

known. A detailed description of the AMCL algorithm 

is available in [12].  
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5- Platform Description and Integration 

5.1 - Platform 

The robotic platform, also used in [1] is a 

DiddyBorg robot [20], a commercially available 

platform that is built around the Raspberry Pi single 

board computer, the on-board computer in this work. 

The DiddyBorg is a six wheeled platform with each 

wheel powered by a 5V motor. Two expansion boards, 

produced by the same company, the PicoBorg reverse  

and the BattBorg, are connected to a Raspberry Pi 2B, 

which interface with the motors and power the 

Raspberry Pi using a battery pack, respectively. Some of 

the motivating factors behind using this platform were 

its cost, its size and off-the-shelf integration with 

existing technologies.   

In previous work [1], the Raspberry Pi was running 

Raspbian Jessie, a commonly used operating system for 

the Raspberry Pi. In this paper, the operating system 

was changed to Ubuntu MATE 16.04, using the 

following installation instructions for the Raspberry Pi 

models 2B or 3 [21]. The main motive for changing 

operating systems was to be able to access software, 

such as the Robot Operating System (ROS), more 

readily, with Ubuntu Mate 16.04 being recommended as 

the faster and easier way to use ROS on Raspberry Pi. 

ROS Kinetic was used in this work.  

 
Figure 1: A photo of the DiddyBorg robotic platform 

with the locations of the RPLIDAR and Raspberry Pi 

camera sensors used in this work. 

5.2 - The Robot Operating System (ROS) 

ROS is an open source meta operating system for 

robots [22], with a large on-line, open-source 

community. Software is available as packages or stacks 

that can be easily distributed and shared and developed 

in multiple languages to allow code reuse in robotics 

research and development [23]. The software is usually 

created as independent programs called nodes [24]. 

Nodes communicate by connecting to a master service 

and by sending messages that are organised into named 

topics. Nodes can send information by publishing 

messages on a topic and other nodes can listen for and 

subscribe to messages coming from topics. There are 

defined message types that can be used for specific 

purposes such as lasers scan messages, camera 

messages and geometry messages for navigation. 

5.2.1 - Motion command node 

Scripts to allow navigation of the DiddyBorg mobile 

platform are based on the original scripts written by the 

manufacturers [25]. These scripts include python library 

to interface the motors with the Raspberry Pi through 

the Picoborg reverse board and the I2C connections on 

the Raspberry Pi. Using this library to interface with the 

motors, a ROS node was written that subscribes to a 

motion command topic in the form of a geometry 

message with type Twist(), commonly used for velocity 

messages [26]. These messages are converted into the 

correct format as used in the aforementioned Python 

library and the relevant velocity commands are then sent 

to the Picoborg expansion board. The motor control 

node is agnostic to the source of the message; hence, 

this node can be used both for tele-operating the 

platform and for motion commands for autonomous 

motion. An example of this process for tele-operating 

the robot and collecting image data is given in Figure 2. 

 
Figure 2: An example of the relationships of 

different nodes. The route the velocity 

commands and image data takes between the 

robot and the relevant node is also shown. 

5.2.1 - User interface  

In previous work, Node.js was used to create a user 

interface by incorporating libraries for the Picoborg 

reverse and the Raspberry Pi camera. This user-interface 

has now been developed to incorporate Roslibjs [27]. 

Roslibjs is part of the Robot Web Tools effort and is a 

JavaScript library for interacting with ROS from a web 

browser. Roslibjs allows the functionality of ROS such 

as publishing and subscribing to messages, service calls 

and other core ROS functionality. This user interface 

allows the teleoperation of the robot from a web-

browser and can be accessed from a mobile phone. 
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6- Other Hardware and Sensors 

6.1.1 Raspberry Pi camera module 

Raspberry Pi camera module version 1 was used for 

photographic data collection. This camera is capable of 

producing 5MP pictures and 1080p HD video at 30fps. 

The camera module is not automatically compatible 

with a Raspberry Pi 2B running Ubuntu Mate, hence 

some adjustments and drivers were required, as 

described in [28]. A ROS package, raspicam_node has 

also been developed for the Raspberry Pi camera by 

[28].  

6.1.2 - Camera calibration 

Camera calibration is required for ORB-SLAM. The 

same calibration parameters were used as an input to 

SfM. However, the software is capable of finding the 

calibration parameters automatically and these 

parameters were adjusted by the SfM software. The 

monocular calibration script from ROS [29] was used to 

calibrate the Raspberry Pi camera. An 8x6 chessboard 

was placed on a planar surface and the camera was 

moved to obtain different viewpoints. The calibration 

software indicates when sufficient samples have been 

collected to perform a calibration. However, further 

samples were taken until the software indicated that the 

samples taken were above a ‘good’ threshold for 

translation in x, y and skew (indicated in a traffic light 

system from red to green). This number of samples 

translates to around 120 readings, which is comparable 

to [17]. 

6.1.3 - RPLIDAR 

Previous work [1] considered the requirements of 

autonomous navigation of robots in inspection 

environments. Camera data was used for SfM 

reconstructions, which were then processed to create a 

2D map, with the goal of localising in the map using 

ultrasound sensors. 

In this work, mapping and localisation in an 

inspection environment was also considered, but this 

time a 2D LiDAR, the RPLIDAR version A1, was used. 

The RPLIDAR is a low-cost (£300) 2D LIDAR solution 

developed by RoboPeak. The sensor has a range of 6m 

in 360° with readings being taken at 5.5Hz. The sensor 

was easily incorporated into the current setup, with 

mounting possible directly onto the top of the 

DiddyBorg platform. The sensor power supply is 5V, 

with a USB connector which can be powered directly 

from the Raspberry Pi. Drivers  and ROS packages are 

readily available on the Raspberry Pi and can be 

installed from [30]. 

7 - Site Description  

The site considered in this paper is the Millennium 

Bridge, a cable suspension footbridge in Leeds, UK. 

The bridge, which opened in 1993, crosses the River 

Aire spanning approximately 57m to connect The Calls 

to Brewery Place.  The bearings on the north side of the 

river were used as the site for data collection. 

The North side bearings are situated in the top 

abutment, and its dimensions are approximately 

2.8x1.2m. There is a trough that runs alongside one side 

of the site, and there are various pipes and electrical 

cables running along the length of the enclosure. The 

top bearings are seated on the bridge by means of a 

machined steel plate bolted to the bearing. 

8 - Survey and Data Collection 

Data collection was performed by tele-operating the 

robot in the bearing enclosure using the user interface 

described in section 5.2.2. A router was used to allow 

networking between the DiddyBorg platform and a 

laptop.  

Next, data collection was performed. At this stage, 

data from the raspicam_node and the rplidar node were 

recorded into rosbags to allow post-processing of the 

data. Rosbag is a command-line ROS tool for storing 

serialised ROS messages in a file as messages are 

received from specified ROS topics. This tool allows 

the data to be replayed through the ROS topics at a later 

date. LiDAR data was collected on two separate 

instances. One set of data was used to create a map, and 

the other was used as test data for the localisation 

algorithm, see section 9.3. 

The camera resolution was set at 320x200 pixels to 

allow real-time processing of the camera data. This 

resuolution is a similar to the one used in [17]. Camera 

data was sent in jpeg compressed form by the raspicam 

node, received and uncompressed using ROS 

image_transport tools on the laptop and then processed 

by the ORB-SLAM2 node, as depicted in Figure 2.  

As discussed in section 3.1, before mapping can 

begin, initialisation of ORB-SLAM must occur. Once 

initialisation occurred, the DiddyBorg platform was 

navigated around the bearing enclosure to build up a 

map of the environment. Three repetitions of ORB-

SLAM were completed. In contrast to previous work [1], 

separate data was not collected for the SfM calculations, 

but the data collected for ORB-SLAM was also used for 

this purpose. 
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 9 - Results and Discussion 

The effectiveness of the SLAM methods ORB-SLAM 

and Hector SLAM is now considered. A qualitative 

comparison between the methods is given in Table 1. 

9.1 -  ORB-SLAM 

As described in [31], changes in lighting conditions 

causes tracking failure between frames for multiple 

feature descriptors. This phenomenon also affected the 

localisation and mapping of ORB-SLAM, as expected. 

Since data collection was performed in the late 

afternoon, by the third repetition the sun had set below 

the level of the bridge, see Figure 3. As a result, there 

was a greater contrast between lighting conditions in 

successive frames and tracking was lost for a large 

period of time, see Figure 3.  

 
Figure 3: Two frames from ORB-SLAM that results in 

the map shown in Figure 4. ORB features are marked as 

green squares in the left hand image. In the right hand 

image no features appear since tracking has been lost 

due to a sudden change in lighting conditions. 

 

 
Figure 4: The map produced by ORB-SLAM. The key 

frame locations can be seen by the blue rectangles, the 

current keyframe as a green rectangle and the 

progression of the robot also in green. The red map 

points show the local visible map. 

In general, initialisation was obtained quickly, with 

sufficient features provided by objects in the 

environment (e.g., railings and litter). Throughout the 

mapping, adequate features were present, with texture 

being provided by dirt and cracks on planar surfaces. 

Figure 3 shows a comparison of the ORB-SLAM results 

when initialisation is successful and ORB frames are 

being tracked and some frames later when tracking has 

been lost due to abrupt change in brightness. 

Tracking was also lost due to abrupt and fast 

motions, as anticipated. When the tracking was lost, the 

robot has to return to a previous key frame and 

localisation is performed globally, this was performed 

successfully in most cases. As a result of loss of 

tracking the whole area mapped with the same detail, 

this is likely to affect localisation with new data. 

It is also possible to save and reload a map using 

additional functionality developed by [32]. The 

localisation mode in ORB-SLAM can then be used with 

a loaded map and new data for localisation. In future 

work, the expansion of this tool for autonomous 

navigation will be considered, where one obstacle to 

over-come is to provide scale to the map.  

9.1.1 - SfM Results 

The data collected and used for ORB-SLAM in 

Figure 4 was also sufficient the SfM reconstruction to 

be successful. Approximately 230 images were 

collected in total and used for the SfM reconstruction. 

SfM was not as affected by the variations in brightness 

and was able to use more of the dataset, whereas ORB-

SLAM cannot use the frames where tracking was lost. 

Although the front wall of the abutment in Figure 5 was 

one of the least detailed areas of the SfM reconstruction, 

it was much more detailed than the corresponding 

region in Figure 4. Similarly, it can be seen that there 

are more areas in Figure 5 where photos were used 

compared to Figure 4, both indicated by blue triangles. 

 
Figure 5:  The SfM reconstruction completed using 

Zephyr Aerial SfM software. The same dataset used for 

ORB-SLAM was used for the reconstruction. The 

camera positions can also be seen as blue triangles.  

9.2 - Hector SLAM 

The environments shown in Figure 5 and Figure 8 

show some inconsistencies. In Figure 5 the curved wall 

at the front of the enclosure can be clearly seen, there is 

no sign of this wall in Figure 8 . The reason for this 

discrepancy was the height of the RPLIDAR with 

regards to the wall – when mounted on the DiddyBorg 

platform the RPLIDAR was higher than the wall,  and 

hence the wall not detected by the sensor. 

The map created by Hector SLAM in Figure 8 

shows lines that go off the map. These lines are sensor 

readings recorded by the LIDAR at maximum sensor 
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range. The bridge in question crosses the River Aire and 

these maximum readings are caused by reflections off 

the water.   

In addition, Figure 8 shows errors in the SLAM 

results that occurred when the robot mounted an 

electrical cable that was present in the bearing enclosure. 

This cable caused the base, and hence the RPLIDAR, to 

tilt into a different plane. As discussed in section 3.2, 

Hector SLAM can be used in situations where the plane 

of the LIDAR changes, allowing 3D navigation. To 

achieve this an IMU is required and integrating this 

sensor information to track the transformation of the 

base to a stabilised base [18]. This consideration will be 

included in future work to give a more robust SLAM 

system.  

  To compare the results from ORB-SLAM and 

hector_slam  the trajectory outputted by both methods 

was recorded simultaneously and plotted in   

Figure 6. The results show overall the trajectories are 

very similar in shape. However, the trajectory for ORB-

SLAM is less accurate and has  greater variation than 

Hector SLAM and gaps appear when the trajectory 

crosses  itself.  

 
Figure 6: A comparison between the trajectories of the 

robot using Hector SLAM (left) and ORB-SLAM 
(right). Note the figures are not plotted together since 

the ORB-SLAM results require scaling. 

10 – Results:Hector SLAM for Autonomous 

navigation using AMCL. 

It is possible to perform autonomous navigation 

using the hector_navigation stack [33], also developed 

for urban search and rescue environments by the same 

authors of Hector SLAM. The hector_navigation stack 

contains packages such as the hector_exploration_node, 

which accesses the hector_exploration_planner, a 

planning library that allows the robot to explore 

unknown areas of the map. However, the resulting map 

cannot be saved and used again with the 

hector_navigation stack. 

For inspection applications it is useful to have a 

known map to highlight targets for inspection or areas 

of interest, in advance. For this reason, Adaptive Monte 

Carlo Localisation (AMCL) was used for localisation in 

a known map; the map was created using hector_slam. 

As in section 8.2, the hector_slam package was used to 

provide odometry from the 2D LiDAR data. This 

process was visualised using rviz and displayed in 

Figure 9a-c.  The implementation used in this work is 

based on [34].  

Initially, the front wall of the enclosure was not 

registered in the map, but in reality these areas past the 

front wall are not accessible. For caution, since no 

method has been implemented here to prevent 

navigation to areas beyond the front wall, the navigation 

system was not tested in the abutment enclosure. 

However, LIDAR data collected from the bridge is used 

as the input and the same commands for a particular 

navigation goal were successfully received.  

 
Figure 7: Shows the result of hector_slam with the robot 

position and path marked by in the figure. Localisation 

and mapping errors occur in this example because the 

RPLIDAR is tilted out of its original plan without any 

update e.g., using data from an IMU.  

 

 
Figure 8: The SLAM result for one set of LIDAR data 

using Hector SLAM. The robot position, trajectory and 

map boundaries are shown. Maximum sensor values are 

also returned in some instances – shown by lines that go 

outside the map. 

Conversely, one of the disadvantages of using pre-

existing maps is if the environment changes, the map 

may no longer be representative. In Figure 9c) the front 

wall of the abutment was picked up momentarily by the 

LIDAR. As a result, localisation was temporarily lost, 

since the wall is not a known landmark and some 

particles are placed outside of the map.  

One disadvantage of AMCL is that a start position is 

required to be set for the localisation process to begin. 

Since the geometry of the bridge is well known in this 
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case, an initial position can be set fairly accurately. This 

can also be set automatically. Figure 9 shows the scatter 

of particles before the initial position and again once the 

particles have converged to a location.  

 

 
Figure 9: a, b and c top to bottom.  

a) Initially, particles are spread across the whole map.  

b) After a few time steps particles converge. 

c) Change in map – front of the enclosure detected by 

2D LiDAR, position estimation of robot was lost. 

Table 1: A qualitive comparison between ORB-SLAM 

and Hector SLAM with AMCL. 

 

 

 

ORB-SLAM 

(localization only) 

Hector SLAM 

Plus AMCL 

Cost Lowest Highest 

Accuracy Lowest Highest 

Automatic 

scale 

No Yes 

3D map Yes No 

Use data 

elsewhere 

Yes: use directly 

for SfM. 

Require camera 

for visual 

inspection. 

Environment 

variation/ 

 Real world 

robustness 

Affected by 

lighting. 

Harder to relocalise 

Lost if scan 

doesn’t match 

environment, 

but relocalises 

well. 

Autonomous  

Navigation 

Need some method 

for scaling first. 

Easily 

implemented. 

Future work Sensor Fusion: 

odometry for 

scaling 

Sensor fusion: 

IMU for 3D 

navigation 

Table 1 compares some qualitative differences 

between using Hector and AMCL and ORB-SLAM for 

localisation. Note, that since no method for navigation is 

implemented for ORB-SLAM in this paper, localisation 

only is considered. Overall, the low cost and re-use of 

data are key advantages of ORB-SLAM, but Hector 

SLAM with AMCL is more accurate, and autonomous 

navigation could be implemented by outputting the 

position in the map and the required target to the ROS 

navigation stack. Both methods require future work to 

improve their robustness in inspection environments, 

but the results so far are promising. 

11- Future Work and Considerations 

To increase the robustness of the SLAM and 

autonomous navigation approaches used here, sensor 

fusion will be implemented, primarily with an inertial 

measurement unit for the hector_slam approaches and 

odometry for ORB-SLAM to incorporate scale into the 

map. Future work will look at extending the ORB-

SLAM localisation method considered here for 

navigation. 

12 - Conclusions 

In this work, an improved robot for inspection of 

bridge bearings with off-the-shelf low-cost camera and 

LIDAR technology was presented. Building upon 

previous work, existing methods for Simultaneous 

Localisation and Mapping (SLAM) (i.e., ORB-SLAM 

and Hector SLAM) were applied to a real bridge. Visual 

inspection was carried out and qualitatively compared 

the differences in the methods. Using Hector SLAM, we 

then explored methods for autonomous navigation, with 

a known map. 
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